Overview of the MPI Standard and
Implementations

Christina Zeeh
May 21, 2004

The Message Passing Interface (MPI) has become a standard for mes-
sage passing parallel applications. This report first introduces the under-
lying paradigm, message passing, and explores some of the challenges
explicit message passing poses for developing parallel programs. We then
take a closer look at the MPI standardization effort, its goals, and its re-
sults to see what features the current version of the MPI standard pro-
vides and how MPI became what it is today. Several implementations
of the MPI standard, including the open source LAM/MPI and MPICH
implementations, and Sun MP], as an example of a vendor-supplied MPI
implementation, are being presented. A comparison is attempted regard-
ing various aspects, such as supported MPI features, system architecture,
network hardware, and operating system. Graph-oriented programming
(GOP), a high-level abstraction for message passing applications based on
MP], is included as an example of ongoing research that aims to help the
developer overcome some of the challenges the low-level approach taken
by MPI poses. The report concludes with an outlook on the future of the
MPI standard and its implementations, and how they are influenced by
current trends in cluster computing.

1 Introduction

MPI stands for Message Passing Interface. Message passing is one of the
oldest and most widely used paradigms for programming parallel com-
puters, in particular for distributed memory machines/multicomputers.
Communication happens exclusively through messages, which by itself
implies some degree of synchronization. In contrast, when programming
a shared memory multiprocessor, synchronization always has to be explic-
itly taken care of, for example through semaphores (Fig. 1).

Multiprocessors Multicomputers

distributed
Memory shared memory
memory
o data in shared .
Communication message-passing
memory
Synchronization explicit implicit

Figure 1: Multiprocessors and Multicomputers

1.1 Message Passing

Message passing is based on two primitives, send and receive. Issues such
as buffering, blocking, and reliable communication introduce different mes-
sage passing semantics:

e A message can be buffered by the message passing subsystem at the
sender, the receiver, or both. This determines whether a send op-
eration returns immediately, or needs to wait until the message is
buffered, or even received at the other end.

e Operations can be blocking, meaning the operation will not complete
until some condition is satisfied, for example, until the message is
copied to a buffer, or received at the other side, etc.

e Reliability determines whether messages are guaranteed to make it to
their destination, whether the sending order is preserved, and whether
there are provisions against message corruption.

Characteristics

Developing applications using the basic message passing paradigm re-
quires a low-level approach: Work and data must be explicitly distributed
to processes, and communication happens exclusively through messages.
All interactions between two processes therefore require both processes to
actively participate — one sends, the other receives. Also, blocking com-
munication comes with a danger of deadlocks. All of these characteristics
lead to a widespread perception that writing message passing programs
is hard. But those characteristics pose not only drawbacks: A low-level
approach leaves room for optimization, and having to explicitly pass mes-
sages to communicate makes the programmer realize the cost of commu-
nication and leads to good locality.

2 The MPI Standard

2.1 History

In the early 1990s, message passing was already an established paradigm.
Though some consensus had been reached on what functionality a mes-
sage passing library is to provide, most of the available message passing
libraries — usually vendor-supplied — were mutually incompatible. Ap-
plications developed for one message passing library could not easily be
ported to a different one, leading to investments in software development
being lost when moving to a different system. First attempts at develop-
ing portable message passing libraries were successful, and it was felt that
the time was right to start developing a standard for message passing li-
braries.

The MPI Forum, a group of over 60 people from 40 organizations — hard-
ware and software vendors, as well as research institutions — formed to
develop this standard. An initial meeting at the Workshop on Standards
for Message Passing in a Distributed Memory Environment in April 1992
was followed by preliminary draft proposals for the standard in Novem-
ber 1992 and February 1993. The draft of the standard was presented at the
Supercomputing ‘93 conference, and version 1.0 of the Message Passing
Interface (MPI) standard was released May 5, 1994 [6].

2.2 MPI-1

What is known today as MPI-1 has evolved over three releases of the stan-
dard: version 1.0, the original standard, released in April 1994, version
1.1, released in 1995, containing clarifications, corrections and additional
examples, and version 1.2, which is incorporated in the MPI-2 standard,
containing further clarifications, corrections, and a routine to obtain the
standard version number.

The MPI-1 standard specifies routines for dealing with
e point-to-point communication
e collective communication
e communicators, groups, contexts and
e datatypes.

We will cover each of these topics of the MPI-1 standard in the following
sections. Additional details and the exact syntax for the MPI-1 routines
can be found in the MPI standard documents [6], [7].

2.3 Programming with MPI-1

MPI-1 specifies language bindings for C and Fortran 77, and — though not
part of the standard — mentions the possibility for providing C++ and For-
tran 90 bindings, which are expected to "(...) use the Fortran 77 and ANSI
C bindings, respectively." [7].

The following is a simple "Hello World" program in C to illustrate some of
the basic concepts of MPI programs:

0 #include <string.h>
1 #include <stdio.h>
#include "mpi.h"

2

3

4 int main(int argc, char* argv[]) {

5 char msg[15];

6 int myrank;

7 MPI_Status status;

8 MPIL_Init(&argc, &argv);

9 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
10 if (myrank == 0) { [* process 0 */
11 strcpy(msg,"Hello World");

12 MPI_Send(msg, strlen(msg), MPI_CHAR, 1, 99,
MPI_COMM_WORLD);

13 } else { [* process 1 */

14 MPI_Recv(msg, 15, MPI_CHAR, 0, 99, MP|_COMM_WORLD,
&status);

15 printf("Message: %s\n", msg);

16 }

17 MPI_Finalize(); 14

18 return O;

19 }

The first lines deal with some formalia: MPI is a library, so its headers
must be included into the program (line 2). In line 8, the MPI environ-
ment is initialized and in line 17 it is terminated. Before and after those
lines, none of the MPI-related functions may be used.

The "Hello World" program is designed to run as two processes, process
0 and process 1. Each process uses the same program, which then takes
different paths according to the rank of the process (rank will be explained
shortly, for now just think of it as a process ID). The rank is determined
in line 9, after that, the if-statement makes the two processes take differ-
ent execution paths: Process 0 sends a message "Hello World" to process
1 (line 12), while process 1 receives this message (line 14) and prints it on
standard out.

Compiling an MPI Program
MPI implementations are provided through means of a library. Therefore,
MPI programs are compiled using a standard compiler.

Running an MPI Program

Most MPI implementations provide a command mpirun to run MPI pro-
grams. Often, a parameter to mpirun specifies the number of parallel
processes that will run the MPI program. It is the MPI implementation’s
job to deal with distribution of the program to multiple nodes, this can be
done using one of the remote login services (RSH, SSH) and /or daemons
running on each node. On heterogeneous clusters and grids, an MPI im-
plementation might also provide means to specify the nodes the program
should run on, enabling users to select the computational power they re-
quire.

While the mpirun command is only a de-facto standard among MPI im-
plementations, the MPI-2 standard specifies a command to run MPI im-
plementations, mpiexec .

2.4 Ranks and Communicators

Every process in MPI belongs to one or more communicators. A commu-
nicator defines the scope of communication with the help of groups and
contexts:

e Groups are ordered collections of processes. Each process in a group
has a rank unique in the group, ranks range from 0 to the size of the
group - 1.

e Contexts provide means to isolate one message space from another.
It is similar to an additional tag for messages.

In addition to its group and its context, a communicator also provides
means to store additional attributes, such as virtual topology information
(see section 2.8).

There exist two types of communicators: intra-communicators and inter-
communicators:

¢ An intra-communicator is used for communication between a group
of processes.

¢ Aninter-communicator is used for communication between two groups
of processes. We will encounter this type of communicator later when
talking about the MPI-2 standard (section 3.2).

2.5 Datatypes

MPI messages contain a fixed number of elements of a datatype. MPI dis-
tinguishes between basic datatypes like MPI_INT, MPI_FLOAT, MPI_CHAR,
as well as the uninterpreted MPI_BYTE and MPI_PACKED, and derived
datatypes that are build from basic datatypes or recursively from other de-
rived datatypes. Except for MPI_PACKED and MPI_BYTE, the datatype
specified in the send and receive calls must be identical.

Derived Datatypes allow for messages with mixed datatypes and for
sending non-contiguous data without the overhead incurred by manually
packing /unpacking data (memory-to-memory copies). A type map spec-
ifies the layout of such a derived datatype and consists of the datatypes
that make up the derived datatype, and their respective displacements
from the "start" of the datatype. There are four principal derived datatypes
with corresponding constructors:

e MPI_TYPE_CONTIGUOUS$ the most simple constructor, it simply
repeats one datatype contiguously a certain number of times.

TIT|T|T|T|T|{T|T|T|T|T|T

e MPI_TYPE_VECTORrovides for block-wise replication of a a datatype
with equal spacing between each block.

TiT|T] |T|T|T| [T|T|T

e MPI_TYPED_INDEXEDallows a different number of repetitions in
each block, and also a different displacement for each block

TIT T|T|T| |[T| |T|T

e MPI_TYPE_STRUCTSs the most powerful constructor, it adds the pos-
sibility to use different datatypes in each block

TIT TIT(T| [T| T[T

2.6 Point-to-Point Communication

MPI provides routines for basic message passing functionality between
two processes using the send and receive primitives. For sending, block-
ing and non-blocking operations are provided, while for receiving there is
only a blocking operation.

The basic form of an MPI is passed six parameters:
MPI_SEND(buf, count, datatype, dest, tag, comm)

e buf —buffer containing the data to be sent

e count —number of elements in buffer

e datatype - datatype of the buffer elements
e dest —destination’s rank

e tag —message tag

e COMM- communicator

The last three items, together with the message source, constitute the en-
velope of the MPI message.

2.6.1 Blocking Send

The blocking send operations of MPI block until some condition, accord-
ing to the selected communication mode, is fulfilled. There are four com-
munication modes:

e standard
e buffered
e synchronous

e ready

Standard Mode

In this mode, it is up to MPI to decide whether to buffer outgoing mes-
sages or not. If buffering is used, the call can complete before a matching
receive is posted at the other side. If no buffering is used, the call will
not complete before a matching receive is posted. Since this mode may
depend on an action at the receiver, it is non-local.

Buffered Mode

In this mode, buffering is always used at the sender. Therefore, this call
does not depend on a matching receive being issued at the other side and
is local. If the sender runs out of buffer space, an error occurs.

Synchronous Mode

A call in this mode will only complete when a matching receive has been
posted at the other side. Therefore, this call is non-local. In combination
with a blocking receive operation it provides truly synchronous commu-
nication.

Ready Mode

In this mode, send can only be started if a matching receive has been
posted at the other side, though no statement is being made about the
state of such a receive operation. It is non-local and completes according
to the semantics of the standard mode. The reason for the existence of this
mode is that it saves some overhead on some systems.

2.6.2 Non-Blocking Send

MPI’s non-blocking send operations use the same four communication
modes as the blocking operations. The difference is that the non-blocking
versions are split up into an initiation and a completion part. This allows
the application to do computations while waiting for a communication to
complete.

Communication is initiated using one of the MPI_ISEND operations, and
completed using either MPI_TEST or MPI_WAIT. MPI_TEST checks if the
send operation has completed and returns immediately, while MPI_WAIT
is a blocking call that will return only when the send has completed. Thus,
when using one of the MPI_ISEND functions immediately followed by an
MPI_WAIT, it is equivalent to a blocking send.

2.6.3 Receive

The receive operation in MPI is always blocking. The message to be re-
ceived is selected according to the parameters of the receive operation, it
must match tag, source, and communicator of the message. It is possible to
use wildcards (MPI_ANY_SOURCEnd MPI_ANY_TAG to match arbitrary
messages.

2.7 Collective Communication

Collective communication operations, such as barrier, broadcast, scatter/
gather, and reduction, allow for communication among all processes of a
communicator. The functions for collective communication are collective,
meaning they have to be called by all processes in the communicator be-
fore they return.

Barrier

A barrier is the simplest collective communication operation, its purpose
is to allow all processes to rendezvous at a point in execution. The barrier
function returns only when all processes in the communicator have called

it as shown in Fig. 2 — metaphorically speaking, the barrier won’t open un-
til all processes have arrived there. Traditionally, barriers are used to sep-
arate phases of computation, for example when intermediate results have
to be exchanged. Since MPI's more sophisticated collective communica-
tion operations provide rendezvous functionality, as well as data transfer,
basic barrier synchronization is primarily used for debugging purposes.

Figure 2: Barrier

Broadcast

The broadcast operation broadcasts a message from one process (the root
process) to all processes in the communicator. Like every collective func-
tion, it returns once it has been called by all processes in the communicator,
on return, all the processes have root’s message in the buffer specified in
their call of the broadcast function (Fig. 3).

broadcast

C

W P~
O ©

Ca
& g @

Figure 3: Broadcast

Scatter/Gather

The scatter/gather operations are used to distribute data to processes (scat-
ter) and collect data — usually results — from processes (gather). The basic
operations scatter data from the root process buffer to all the processes,
and gather data from all processes to a buffer in the root process. MPI
also provides more sophisticated scatter/gather operations: Gather-to-all
being similar to gather, but distributing the buffer with the gathered data
to all processes, and an all-to-all gather/scatter operation that allows each
process to send and receive distinct data to and from each other process.

wl
ABCDE

Figure 7: All-to-all

Reduction
Reduce operations apply a function to values gathered from processes.
The function can be one of the built-in functions such as MIN, MAX, and

SUM, or a user-defined function.

10

2.8 Virtual Topologies

Since most parallel programming problems are inherently multi-dimen-
sional, it would be convenient to be able to reflect this multi-dimensionality
in the process naming, for example using coordinates in a multi-dimen-
sional grid, instead of sequential ranks. Also, if we had a way to reflect
the topology of our problem in our MPI program, sophisticated MPI im-
plementations could use this information to optimize the assignment of
processes to physical nodes.

The MPI standard specifies a way to store this virtual topology informa-
tion through additional communicator attributes, as mentioned in section
2.4. There are two kinds of virtual topologies defined by MPI:

Graph Topologies assume communication to be between neighboring
nodes in the graph, MPI provides convenience functions to determine the
neighbors of a process.

Cartesian Topologies allow for cartesian structures of any dimension.
Convenience functions for converting between cartesian coordinates and
ranks are provided.

3 MPI-2

MPI-2, the second major version of the MPI standard, was released in
1997 [8]. It incorporates a new version of the MPI-1 standard (1.2) con-
taining additional clarifications, error corrections, and also a function for
retrieving the version number of the MPI standard used. It is the first MPI
version that defines official bindings for Fortran-90 and C++. New func-
tionality provided by MPI-2 includes one-sided communication (remote
memory access), dynamic creation and termination of processes, and pro-
visions for parallel I/O. Each of those newly included topics will be pre-
sented in this chapter.

3.1 One-Sided Communication

Until MPI-2, all communication in MPI required at least two processes
to actively participate in the communication. One-sided communication
in MPI-2 allows processes to access each others memory using the two
primitives MPI_PUT and MPI_GET without active participation from the
process whose memory is being accessed (target process). As a prerequi-
site for one-sided communication, all processes in a communicator must

11

make a part of their memory (a window) available for access by other pro-
cesses. This is done through a collective call, on return, all processes have
made a window available and know about the other processes” windows.

Since one-sided communication is a deviation from the core message pass-
ing paradigm, explicit synchronization is needed. MPI-2 distinguishes be-
tween active and passive target communication, which use different syn-
chronization mechanisms.

Active Target Communication

e The first form of active target communication allows a process (ori-
gin) to access the memory of another process (target). The target
process is actively involved in the remote memory access. To gain
access, the origin process calls MPI_WIN_START which blocks un-
til the target process allows access using MPI_WIN_POST The tar-
get process ends the access epoch using MPI_WIN_WAIT, which will
block until the origin process voluntarily gives up access through
MPI_WIN_COMPLETEFig. 8).

origin target

WIN_START
WIN_POST

- -
-
-

access
epoch

WIN_WAIT

WIN_COMPLETES* ~

v

-

[blocked

Figure 8: Active Target Communication

e There is also MPI_WIN_FENCE a collective call that allows all pro-
cesses in the communicator to access each other’s memory between
two calls of MPI_WIN_FENCE

Passive Target Communication

In passive target communication, the target process is not involved at all
in the synchronization. Processes that want to access the memory of an-
other process gain access using MPI_WIN_LOCKand give up the lock us-
ing MPI_WIN_UNLOCKIf a process already holds a lock for a window, an-
other process’ attempt to acquire a lock for that window will either block

12

(as shown in Fig. 9), or a subsequent MPI_PUT will block until the lock
can be obtained — it is up to MPI implementors to decide which method to
use.

origin 1 origin 2
WIN_LOCK

WIN_LOCK

access

epoch

WIN_UNLOCK _
access
epoch
v
[blocked

Figure 9: Passive Target Communication

3.2 Dynamic Processes

So far, the number of processes of an MPI implementation had to be speci-
fied on startup and remained static until the application terminated. MPI-
2 provides ways for a running MPI application to create and terminate
processes, and to establish communication to non-related processes. For
these tasks, the underlying process management system is being used. It
is even possible to access specific properties of the process management
system using a special argument (info), though this opportunity should be
used with caution since it compromises portability of the MPI application.

Dynamic processes are an important application for inter-communicators,
all process creation operation return a new inter-communicator to estab-
lish communication to the newly created process(es). The new process(es)
can obtain an inter-communicator to communicate to the processes that
created it/them using MPI_COMM_GET_PARENT

3.3 Parallel I/O

In parallel applications files are accessed concurrently, and the data in one
file may be shared by many processes that need to read and write non-
contiguous pieces of the file — coordination of that access is something
demanded of a parallel programming library. Also, parallel applications
should be able to influence lower-level parallel I/O mechanisms such as
RAID striping.

13

A part of MPI-2 also known as "MPI-IO" makes provision for both of these
demands by means of views and hints (Fig. 10). Hints are similar to the
"info argument" with dynamic processes, they allow applications to influ-
ence, for example, how a file is striped on a RAID system. Views enable
parallel processes to concurrently read and write non-contiguous pieces
of a file, while each having their own, contiguous view of that file.

Figure 10: Parallel I/O and MPI-2

Using the same mechanisms known from derived datatypes, MPI-2 lets
each process have its own, contiguous view of non-contiguous pieces of
a file. An etype defines the datatype of entries in a file, while the filetype
defines a "filter" on the sequence of etypes as illustrated in figure 11.

filetype view

process 0 NI T T
process 1 I [ENENENGNE -

file

displacement

etype []

Figure 11: Views

In addition to views and hints, MPI-IO also provides support for shared
and individual file pointers, blocking and non-blocking/split-collective
synchronization, as well as individual and collective file access operations.

3.4 Other Developements

Part of the MPI-2 standardization process was the development of a stan-
dard for MPI in realtime environments. This standard, MPI/RT, ultimately

14

was not included in the MPI-2 standard, but is now a separate standard
currently available in version 1.1 [11]. Also not included were features like
split collective operations (similar to non-blocking point-to-point routines)
and dynamic processes creation without establishing communication [9].

4 MPI Implementations

The MPI standardization process was characterized by close and produc-
tive cooperation of vendors and researchers, leading to a widespread ac-
ceptance and numerous available implementations. There are vendor-
supplied MPI implementations, for example from Sun, SGI, HP, and NEC,
as well as commercial implementations like ChaMPIon/Pro and WMPL
Universities and government laboratories also have developed open source
MPI implementations, such as MPICH and LAM/MPL

All of the available MPI implementations implement all or almost all of
MPI-1. In contrast, complete MPI-2 implementations are still hard to find,
even though MPI-2 has been standardized seven years ago.

In the following sections, we look at four major MPI implementations, and
attempt a comparison of features: MPICH, LAM/MPI, ChaMPIon/Pro
and Sun MPL

4.1 LAM/MPI

LAM/MPI [5] is an open source MPI implementation that was first devel-
oped at the Ohio Supercomputing Center, maintained by the University
of Notre Dame and now by Indiana University. It implements all of MPI-1
and almost all of the MPI-2 standard. Most POSIX platforms are sup-
ported.

LAM/MPI uses daemons for the runtime environment, and authentica-
tion/remote execution is based on the well-established RSH and SSH pro-
grams. Since the LAM runtime environment is "booted" independently
from the start of an MPI application using mpirun , the actual startup of
an MPI application is faster than on other platforms.

Newer versions of LAM/MPI offer a modular architecture through the
System Services Interface (SSI). This mechanism currently allows for re-
placement of the LAM daemons (boot), collective operations (coll) and
low-level point-to-point communication (rpi), an important prerequisite
to allow customization for particular networking hardware. Also, it is
possible to add checkpoint/restart (cr) functionality through SSI.

15

4.2 MPICH

MPICH [1] is another open source MPI implementation. It was developed
alongside the standard to allow the MPI Forum to evaluate the viability of
their ideas. The most current version provides a complete MPI-1 imple-
mentation and the MPI-IO portion of MPI-2. Supported platforms include
most Unix flavors and also Windows NT.

MPICH'’s architecture (Fig. 12) is divided into two parts, a platform inde-
pendent MPI implementation, the MPICH layer, and the platform-dependent
Abstract Device Interface (ADI) implementation. To port MPICH to a
new platform, only the ADI implementation needs to be exchanged, the
MPICH layer depends only on the ADI and is completely independent
of its implementation. This architecture has lead to the development of
numerous successful MPICH derivates, such as

e MPICH-V, a fault-tolerant MPI implementation
e MP-MPICH, an MPI implementation for heterogeneous clusters

e MVAPICH, an implementation with support for the native Verbs Level
Interface (VAPI) of InfiniBand

e MPICH-G2, a grid-based MPI implementation

MPICH Layer

ADI (Abstract Device Interface)

ADI Implementation

Figure 12: MPICH Architecture

MPICH-G2

Some of the properties of grids, like widely varying hardware and soft-
ware platforms (with different process management, filesystems, etc.), di-
verse network conditions and the need for cross-site authentication pose
new challenges to an MPI implementation. MPICH-G2 [4] faces those
challenges through an ADI implementation that is based on the Globus
Toolkit, a widely used toolkit for grids, providing ressource allocation
(Globus Ressource Allocation Manager, GRAM), authentication (Grid Se-
curity Infrastructure, GSI), node and service discovery (Monitoring and
Discovery Service, MDS), and I/O capabilities (Global Access to Secondary
Storage, GASS).

16

Since the physical topology of the grid may have a significant impact on
performance (for example, depending on whether communication hap-
pens in a LAN or a WAN), MPICH-G2 uses topology information in com-
municator attributes to optimize collective operations, and uses vendor-
supplied MPI (vMPI) when possible, instead of Globus Communication
for TCP.

Future MPICH Development — MPICH2

All new development effort for MPICH focuses on a complete re-imple-
mentation, MPICH2 [2]. Currently available as a beta, MPICH2 already
provides a complete MPI-1 implementation and some parts of MPI-2 (all
of MPI-IO and preliminary one-sided communication), as well as limited
device support (TCP sockets and shared memory).

4.3 Sun MPI

Sun Microsystems provide their own open-source MPI implementation
[12] for clusters running Solaris 8 and 9. It implements MPI-1 and almost
all of MPI-2 and comes with an extensive software environment:

e Sun Parallel File System

e Prism, a debugger and performance analyzer
e S3L, the Scalable Scientific Subroutine Library
e Sun Cluster Runtime Environment

e Cluster Console Manager

Sun’s MPI implementation is heavily tuned for use on Sun systems.

4.4 ChaMPlon/Pro

ChaMPIon/Pro is a commercial MPI implementation that lists full MPI-
2 support as one of its features. According to material on the product
website [10], it is currently supported on Red Hat Linux on the IA32 archi-
tecture, and SUSE Linux on AMD Opteron systems, with support for In-
finiBand and Myrinet networking hardware provided on both platforms.
Support for additional platforms seems to be planned.

A closed-source commercial implementation, ChaMPlon/Pro is priced at
about 300-400 USD per CPU, and requires the purchase of a one-year sup-
port and maintenance contract. The same company that develops ChaM-
Plon/Pro also offers an MPI-1 only implementation with fairly extensive
operating system support (Linux, Windows, Mac OS X).

17

4.5 Comparison

Figure 13 shows an overview of the MPI implementations presented in
this report. Full support is indicated by a check mark, partial support by
a dot, and no support by a cross.

MPICH LAM/MPI sunmpi ChaMPlon/
MPI-1 v v v v
MPI-2 . . . v
- one-sided comm. b 4 . . v
- parallel I/O . v v v
- dynamic processes 4 v . v
- C++ / Fortran 90 ofe viX viv viv
IMPI Support X v X X
Grid Capabilities v v v X
Debugging Facilites v v v v
* beta

Figure 13: MPI Implementations — Comparison

In addition to the support for features of the MPI standard (for details see
the previous sections), this table indicates the support of implementations
tfor Interoperable MPI (IMPI), a standard that enables MPI applications
to run across different MPI implementations simultaneously, support for
grid computing, and for parallel debuggers.

5 Outlook

5.1 Graph-Oriented Programming

In a recent paper [3], graph-oriented programming is presented as a way
to alleviate some of the difficulties in developing message passing appli-
cation by providing a high-level abstraction (Fig. 14). A complete devel-
opment environment (Visual GOP) supplements the proposed approach
(Fig. 15).

Visual GOP
GOP API
GOP Library

GOP | MPI Library
Runtime

MPI Runtime

Figure 14: GOP Architecture

18

VisualGOP

Files View Layout
=

o = @b mepngrocy (@

[T E— SR T

EL ke

arpapogELOE > hoged

Processars Jdl P4 E'd'-

Tgpank L
iCahle i

H

Figure 15: Visual GOP - screenshot taken from [3]

According to this approach, a program consist of a graph construct de-
scribing the relationships between local programs, a mapping of local pro-
grams to graph nodes, and an optional node-to-processor mapping. The
authors define their own GOP API with the aim of simplifying the MPI
interface by reducing the number of parameters, and replacing commu-
nicators with node groups, which identify processes through node IDs in-
stead of rank and communicator. GOP makes active use of graph topology
information and allows for modification of the graph topology at runtime.

5.2 The Future of MPI

Currently, there is no visible effort towards a new version of the MPI stan-
dard. MPI-2’s functionality is not yet exhausted, and available implemen-
tations are not yet as widely available as one would expect for a standard
that has been available for seven years. Also, most MPI developers are
not programmers, but scientists in an application field, so their interest is
not in a highly sophisticated programming environment, but in one that
works and that they are accustomed to.

Nevertheless, there are significant developments surrounding the MPI stan-
dard: The increasing popularity of grid computing poses new challenges
implementations like MPICH-G2 are trying to meet. Large clusters re-
quire excellent scalability from MPI impementations. Faster networking
hardware demands highly customized versions of the lower layers of MPI
implementations, there is, for example, not yet an MPI implementation
that completely exhausts the InfiniBand VAPI. And of course there is need
for more efforts like GOP, aiming to provide better development environ-
ments and abstractions for MPI programming.

19

References

[1] ARGONNE NATIONAL LABORATORY. MPICH website. http:/ /www-
unix.mcs.anl.gov/mpi/mpich/.

[2] ARGONNE NATIONAL LABORATORY. MPICH2 website.
http:/ /www-unix.mcs.anl.gov/mpi/mpich2/.

[3] CHAN, F.,CAO,]., AND SUN, Y. High-level abstractions for message-

passing parallel programming. Parallel Computing 29 (November
2003).

[4] KARONIS, N., TOONEN, B., AND FOSTER, I. MPICH-G2: A grid-
enabled implementation of the message passing interface. Journal of
Parallel and Distributed Computing 63 (May 2003).

[5] LAM TEAM. LAM/MP website. http:/ /www.lam-mpi.org.

[6] MESSAGE PASSING INTERFACE FORUM. MPIL: A message-passing
interface standard. http://www.mpi-forum.org/docs/mpi-10.ps,
1994.

[7] MESSAGE PASSING INTERFACE FORUM. MPIL: A message-passing
interface standard. http://www.mpi-forum.org/docs/mpi-11.ps,
1995.

[8] MESSAGE PASSING INTERFACE FORUM. MPI-2: Extensions to the
message-passing interface. http://www.mpi-forum.org/docs/mpi-
20.ps, 1997.

[9] MESSAGE PASSING INTERFACE FORUM. MPI: Journal of develop-
ment. http:/ /www.mpi-forum.org/docs/mpi-20-jod.ps, 1997.

[10] MPI SOFTWARE TECHNOLOGY. ChaMPIon/Pro website.
http:/ /www.mpi-softtech.com/products/cluster /champion_pro/.

[11] MPI/RT FORUM. MPI/RT website. http:/ /www.mpirt.org.

[12] SUN MICROSYSTEMS. Sun HPC ClusterTools website.
http:/ /www.sun.com/software /hpc/overview.html.

20

