The Lempel Ziv Algorithm

Seminar “Famous Algorithms”
January 16, 2003

christina.zeeh@studi.informatik.uni-stuttgart.de

The (?) Lempel Ziv Algorithm

LZ77

LR | 7 \ i
‘Lzss| [LzH | LZB [zFe LT |

Applications:

Zip
gzip
Stacker

LZ78

LZMW

Applications:

GIF
V.42

compress

LZW

Overview

ntroduction
Lossless Compression
Dictionary Coding

/77

- Algorithm

- Modifications
- Comparison

LZ78

- Algorithm

- Modifications
- Comparison

Data Compression

e Data shows patterns, constraints, ...

e Compression algorithms exploit those
characteristics to reduce size

The eldest of these, and Bilbo’s favourite, was young Frodo
Baggins. When Bilbo was ninety-nine he adopted Frodo as his
heir, and brought him to live at Bag End; and the hopes of the
Sackville- Bagginses were finally dashed. Bilbo and Frodo
happened to have the same birthday, September 22nd. ‘You had

better come and live here, Frodo my lad,’ said Bilbo one day; ‘and
then we can celebrate our birthday-parties comfortably together.’
At that time Frodo was still in his tweens, as the hobbits called
the irresponsible twenties between childhood and coming of age
at thirty-three.

Lossless Compression

Lossless compression guarantees that the original
information can be exactly reproduced from the
compressed data.

e Run-length coding

e Statistical methods
- Huffman coding
- Arithmetic coding
- PPM
e Dictionary methods
- Lempel Ziv algorithms

Dictionary Coding (1)
e Observation: Correlations between parts of

the data (patterns)

e |[dea: Replace recurring patterns with
references to a dictionary

e Static, semi-adaptive, adaptive

e LZ algorithms use adaptive approach
\/coding scheme is universal
\/no need to transmit/store dictionary

\/single—pass (dictionary creation “on-the-fly”)

Dictionary Coding (2)

e Keep explicit dictionary E:,'fgo
(LZ78 algorithm) was 4

et

The eldest of these, and Bilbo’s favourite, was young Frodo
Baggins. When Bilbo was ninety-nine he adopted Frodo as his
heir, and brought him to live at Bag End; and the hopes of the
Sackville- Bagginses were finally dashed. Bilbo and Frodo ...

Dictionary Coding (3)

e Use previously processed data as
dictionary (LZ77 algorithm)

The eldest of these, Bilbo’s favourite, was young Frodo
Baggins. When Bilbo was ninety-thQe he adopted Frodo as his
heir, and brought him to live at Bag . and the hopes of the
Sackville- Bagginses were finally dashed. Bilbo and Frodo ...

LZ77 (1)

search buffer lookahead buffer

— Match: “bba”
abcbbacde“bbadeaa... Position: 3

— g / Length: 3
—> window Next symbol: ‘d’

Output: (3, 3, ‘d)

e Memory / speed constraints require restrictions

= use a fixed-size window (“sliding window”
principle)

LZ77 (2)

while (lookAheadBuffer not empty) {
get a reference (position ,length) to longest match;
if (length > @) {
output (position, length, next symbol);
shift the window length+l positions along;
} else {
output (@, @, first symbol in lookahead buffer);

shift the window 1 position along;

¥
¥

LZ77 Example

S=001010210210212021021200...
o =3 (size of alphabet)

L. =9 (lookahead buffer size)

n = 18 (window size)

Codeword length:

L.=1+ log,(n -L,) + log,(L,)
=1 + logz(9) + log;(9)
=5

LZ77 Example - Encoder

.100000000000101021021...
T C,=22021

0000000/0110010210210021...
C,=21112

000010[M02102102120321...
C;=20 21 2

LZ77 Example - Decoder

. C;=22021 [00000000/00 1

. C,=21112 [0000000/01J0°10°2

. C3=20212 (000010102/T0270212
. C,=02220 [21/0210212/021021200

LZ/77 Improvements

references to any point in processed data,

LZR variable-length references

1 7SS codewords without symbol, output (offset,
length) or symbol, flag to distinguish

| 7B increasing pointer size, variable-length matches
(no lookahead buffer), min. match length

| 7ZH LZSS and Huffman coding (2 passes), Huffman

table needs to be stored/transmitted

LZ77 Comparison

mLZ770LZROLZSS OLZB BLZH

bits/symbol
o = N w N U1 (@)] ~ o
[
=

bib book* geo obj* paper* pic prog-c term

All values taken from Bell/Cleary/Witten: Text Compression
* combined result for two test files

LZ78 (1)

e Maintain explicit dictionary
e Gradually build dictionary during encoding
e Codeword consists of 2 elements:

- index (reference to longest match in dictionary)

- first non-matching symbol

e Every codeword also becomes new
dictionary entry

LZ78 (2)

w := NIL;
while (there 1s input) {
K := next symbol from input;
1f (WK exists in the dictionary) {
w = wK;
} else {
output (1ndex(w), K);
add wK to the dictionary;
w := NIL;

LZ78 Example - Encoder

001212121021012101221011

L L
#| entry | phrase
1 0 0
21 1+1 01
3 2 2
4 1 1
5 3+1 21
6| 5+0 210
/1 6+1 2101
8| 742 21012
91 7+1 21011

(ternary)

(0 0)
(11)
(0 2)
(00 1)
(10 1)
(12 0)
(20 1)
(21 2)
(21 1)

LZ78 Example - Decoder

Input: #| entry | phrase
00v 1 0 0
11 v 21 1+1 01
02v 3 2 2
01v 4 1 1
31v 5 3+1 21
50v 6| 5+0 210
61v /| 6+1 2101
72 v 8| 7+2 | 21012
71y 9O 7+1 | 21011

001212121021012101221011

LZ78 Weaknesses

Dictionary grows without bound

_ong phrases appear late

nclusion of first non-matching symbol
may prevent a good match

Few substrings of the processed input are
entered into the dictionary

LZW (1)

Most popular modification to LZ78
Algorithm used to compress GIF images
LZW is patented (like many other LZ algorithms)

Next symbol no longer included in codeword
(= dictionary pre-filled with input alphabet)
More substrings entered into dictionary
Fixed-length references (12 bit, 4096 entries)
Static after max. entries reached

LZW (2)

w := NIL;
while (there 1s 1input){
K := next symbol from input;
1f (WK exists 1in the dictionary) {
w = wK;
} else {
output (index(w));
add wK to the dictionary;
w = K;

LZ78 Other Improvements

L 7C variable-length pointers, increasing pointer size,
monitor compression ratio

LZT [LZW + removal of least recently used entries

new entries created by concatenating two last
LZMW
encoded phrases

dictionary contains every unique string of the data
LZ] . .
up to certain length, delete entries used only once

LZFG LZ78 with dictionary storage in a trie and sliding-
window principle (remove oldest entries)

LZ78 Comparison

bits/symbol

O =L, N W N U OO NN o0
! ! ! ! !

mLZ780LZWOLZCOLZT mLZMW OLZFGC O LZ)

LliLl

bib book* geo obj* paper* pic prog-c term

All values taken from Bell/Cleary/Witten: Text Compression
* combined result for two test files

Comparison LZ and Statistical Coding

mLZB OLZFG EPPMC

bits/symbol

bib book* geo obj* paper* pic prog-c term

R
All values taken from Bell/Cleary/Witten: Text Compression
* combined result for two test files

Questions?

D

"@?
ke k)
PrA?

