
The Lempel Ziv Algorithm

Seminar “Famous Algorithms”
January 16, 2003

christina.zeeh@studi.informatik.uni-stuttgart.de

The (?) Lempel Ziv Algorithm

LZ77 LZ78
LZR

LZSS LZBLZH LZW
LZC

LZT
LZMW

LZJ
LZFG

Applications:
• zip
• gzip
• Stacker
• ...

Applications:
• GIF
• V.42
• compress
• ...

Overview
• Introduction
• Lossless Compression
• Dictionary Coding
• LZ77

– Algorithm
– Modifications
– Comparison

• LZ78
– Algorithm
– Modifications
– Comparison

Data Compression

O

The eldest of these, and Bilbo’s favourite, was young Frodo
Baggins. When Bilbo was ninety-nine he adopted Frodo as his
heir, and brought him to live at Bag End; and the hopes of the
Sackville- Bagginses were finally dashed. Bilbo and Frodo
happened to have the same birthday, September 22nd. ‘You had
better come and live here, Frodo my lad,’ said Bilbo one day; ‘and
then we can celebrate our birthday-parties comfortably together.’
At that time Frodo was still in his tweens, as the hobbits called
the irresponsible twenties between childhood and coming of age
at thirty-three.

• Data shows patterns, constraints, ...
• Compression algorithms exploit those

characteristics to reduce size

Lossless Compression

• Run-length coding
• Statistical methods

– Huffman coding
– Arithmetic coding
– PPM

• Dictionary methods
– Lempel Ziv algorithms

Lossless compression guarantees that the original
information can be exactly reproduced from the
compressed data.

Dictionary Coding (1)
• Observation: Correlations between parts of

the data (patterns)
• Idea: Replace recurring patterns with

references to a dictionary
• Static, semi-adaptive, adaptive
• LZ algorithms use adaptive approach
¸coding scheme is universal
¸no need to transmit/store dictionary
¸single-pass (dictionary creation “on-the-fly”)

Dictionary Coding (2)

The eldest of these, and Bilbo’s favourite, was young Frodo
Baggins. When Bilbo was ninety-nine he adopted Frodo as his
heir, and brought him to live at Bag End; and the hopes of the
Sackville- Bagginses were finally dashed. Bilbo and Frodo ...

• Keep explicit dictionary
(LZ78 algorithm)

Bilbo
Frodo
was
...

Dictionary Coding (3)

The eldest of these, and Bilbo’s favourite, was young Frodo
Baggins. When Bilbo was ninety-nine he adopted Frodo as his
heir, and brought him to live at Bag End; and the hopes of the
Sackville- Bagginses were finally dashed. Bilbo and Frodo ...

• Use previously processed data as
dictionary (LZ77 algorithm)

 a b c b b a c d e b b a d e a a ...

LZ77 (1)
search buffer lookahead buffer Match: “bba”

Position: 3
Length: 3
Next symbol: ‘d’
Output: (3, 3, ‘d’)

 a b c b b a c d e b b a d e a a ...

window

• Memory / speed constraints require restrictions
! use a fixed-size window (“sliding window”
principle)

LZ77 (2)
while (lookAheadBuffer not empty) {

get a reference (position ,length) to longest match;

if (length > 0) {

output (position, length, next symbol);

shift the window length+1 positions along;

} else {

output (0, 0, first symbol in lookahead buffer);

shift the window 1 position along;

}

}

LZ77 Example
S = 0 0 1 0 1 0 2 1 0 2 1 0 2 1 2 0 2 1 0 2 1 2 0 0 . . .
a = 3 (size of alphabet)
Ls = 9 (lookahead buffer size)
n = 18 (window size)

Codeword length:
Lc = 1 + loga(n - Ls) + loga(Ls)

= 1 + log3(9) + log3(9)
= 5

C4=02 22 0

C3=20 21 2

C2=21 11 2

C1=22 02 1

LZ77 Example – Encoder
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 1 0 2 1 . . .1.

2. 0 0 0 0 0 0 0 0 1 0 1 0 2 1 0 2 1 0 2 1 . . .

3. 0 0 0 0 1 0 1 0 2 1 0 2 1 0 2 1 2 0 2 1 . . .

4. 2 1 0 2 1 0 2 1 2 0 2 1 0 2 1 2 0 0 . . .

LZ77 Example – Decoder
0 0 0 0 0 0 0 0 0C1=22 02 11.

2. 0 0 0 0 0 0 0 0 1C2=21 11 2

3. 1 0 2 1 0 2 1 2C3=20 21 2

4. C4=02 22 0

0 0 1

0 1 0 2

0 0 0 0 1 0 1 0 2

2 1 0 2 1 0 2 1 2 0 2 1 0 2 1 2 0 0

LZ77 Improvements

LZR references to any point in processed data,
variable-length references

LZSS codewords without symbol, output (offset,
length) or symbol, flag to distinguish

LZB increasing pointer size, variable-length matches
(no lookahead buffer), min. match length

LZH LZSS and Huffman coding (2 passes), Huffman
table needs to be stored/transmitted

LZ77 Comparison

0
1
2
3
4
5
6
7
8

bib book* geo obj* paper* pic prog-c term

bi
ts

/s
ym

bo
l

LZ77 LZR LZSS LZB LZH

All values taken from Bell/Cleary/Witten: Text Compression
* combined result for two test files

LZ78 (1)

• Maintain explicit dictionary
• Gradually build dictionary during encoding
• Codeword consists of 2 elements:

– index (reference to longest match in dictionary)
– first non-matching symbol

• Every codeword also becomes new
dictionary entry

LZ78 (2)
w := NIL;
while (there is input) {
K := next symbol from input;
if (wK exists in the dictionary) {

w := wK;
} else {

output (index(w), K);
add wK to the dictionary;
w := NIL;

}
}

LZ78 Example – Encoder

0 0 1 2 1 2 1 2 1 0 2 1 0 1 2 1 0 1 2 2 1 0 1 1
entry phrase Output:
1
2
3
4
5
6
7
8
9

(ternary)

7 1 (21 1)7+1 21011

0 0 (0 0)0 0
1+1 1 1 (1 1)01

2 2 0 2 (0 2)
1 1 0 1 (00 1)

3+1 21 3 1 (10 1)
5+0 210 5 0 (12 0)
6+1 2101 6 1 (20 1)
7+2 21012 7 2 (21 2)

LZ78 Example – Decoder
entry phraseInput:
1
2
3
4
5
6
7
8
97 1

0 0
1 1
0 2
0 1
3 1
5 0
6 1
7 2

0 0

0

¸
1+1 01

0 1

¸
2 2

2

¸
1 1

1

¸
3+1 21

2 1

¸
5+0 210

2 1 0

¸
6+1 2101

2 1 0 1

¸
7+2 21012

2 1 0 1 2

¸ 7+1 21011

2 1 0 1 1

¸

LZ78 Weaknesses

• Dictionary grows without bound
• Long phrases appear late
• Inclusion of first non-matching symbol

may prevent a good match
• Few substrings of the processed input are

entered into the dictionary

LZW (1)

• Most popular modification to LZ78
• Algorithm used to compress GIF images
• LZW is patented (like many other LZ algorithms)

• Next symbol no longer included in codeword
(! dictionary pre-filled with input alphabet)

• More substrings entered into dictionary
• Fixed-length references (12 bit, 4096 entries)
• Static after max. entries reached

LZW (2)
w := NIL;
while (there is input){

K := next symbol from input;
if (wK exists in the dictionary) {

w := wK;
} else {

output (index(w));
add wK to the dictionary;
w := K;

}
}

LZ78 Other Improvements

dictionary contains every unique string of the data
up to certain length, delete entries used only onceLZJ

LZC variable-length pointers, increasing pointer size,
monitor compression ratio

LZT LZW + removal of least recently used entries

LZMW new entries created by concatenating two last
encoded phrases

LZFG LZ78 with dictionary storage in a trie and sliding-
window principle (remove oldest entries)

LZ78 Comparison

0
1
2
3
4
5
6
7
8
9

bib book* geo obj* paper* pic prog-c term

bi
ts

/s
ym

bo
l

LZ78 LZW LZC LZT LZMW LZFG LZJ'

All values taken from Bell/Cleary/Witten: Text Compression
* combined result for two test files

Comparison LZ and Statistical Coding

0
1
2
3
4
5
6
7

bib book* geo obj* paper* pic prog-c term

bi
ts

/s
ym

bo
l

LZB LZFG PPMC

All values taken from Bell/Cleary/Witten: Text Compression
* combined result for two test files

Questions?

